Forecasting electricity rates via EViews incorporating political decisions

Achim Wübker achim.wuebker@statcon.de

STATCON

21. Oktober 2014

(4月) (日) (日)

1 Introduction

- Basic Market Structure
- Economic Relevance

2 Modelling electricity rates

3 Forecasting future electricity rates: Approach II

- The Economic Model of Supply and Demand
- Explict Price Equation
- Toy Model
- Literature

A 3 b

"Die Energie kann als Ursache für alle Veränderungen in der Welt angesehen werden", Werner Heisenberg, Physik und Philosophie

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Main Concerns

Items to address:

• Modelling electricity rates: Key features of the electricity market

< 日 > < 同 > < 三 > < 三 >

-

Main Concerns

Items to address:

- Modelling electricity rates: Key features of the electricity market
- Electricity rates and EViews: Statistical Inference

< 日 > < 同 > < 三 > < 三 >

Main Concerns

Items to address:

- Modelling electricity rates: Key features of the electricity market
- Electricity rates and EViews: Statistical Inference
- Stochastic supply and demand: Modelling electricity rates

- 4 同 6 4 日 6 4 日 6

First thoughts

Basic Market Structure Economic Relevance

People are interested in energy: Why?

< 日 > < 同 > < 三 > < 三 >

э

Basic Market Structure Economic Relevance

First thoughts

People are interested in energy: Why?

•
$$E = m * c^2$$

< 日 > < 同 > < 三 > < 三 >

э

Basic Market Structure Economic Relevance

First thoughts

People are interested in energy: Why?

• $E = m * c^2$ maybe - but only a few

Basic Market Structure Economic Relevance

First thoughts

People are interested in energy: Why?

- $E = m * c^2$ maybe but only a few
- The importance of energy drinks

- 4 同 6 4 日 6 4 日 6

Basic Market Structure Economic Relevance

First thoughts

People are interested in energy: Why?

- $E = m * c^2$ maybe but only a few
- The importance of energy drinks probably not
- Energy capacities are bounded

< 日 > < 同 > < 三 > < 三 >

Basic Market Structure Economic Relevance

First thoughts

People are interested in energy: Why?

- $E = m * c^2$ maybe but only a few
- The importance of energy drinks probably not
- Energy capacities are bounded seems true

< 日 > < 同 > < 三 > < 三 >

Basic Market Structu Economic Relevance

First thoughts

People are interested in energy: Why?

- $E = m * c^2$ maybe but only a few
- The importance of energy drinks probably not
- Energy capacities are bounded seems true

 $\mathsf{Limited \ capacities} \Rightarrow \mathsf{Access \ restricted}$

 \Rightarrow Energy has a price

Here: Focus on electricity rates

イロト イポト イラト イラト

Basic Market Structure Economic Relevance

Can we model the price?

Energy Law in Germany: Two Landmarks

• till 1998: Energiewirtschaftsgesetz (1935): prevent competition due to "Demarkationsverträge"

 \implies locally monopolistic structure

 \implies Price determined by "individual proposal"

Impossible to provide a "good model"

- from 1998: Gesetz zur Neuregelung des Energiewirtschaftsrechts: Liberalization of electricity market from 2005 onwards
 - \implies Competition

Existence of a market allows for modelling the electricity rates

・ロト ・得ト ・ヨト ・ヨト

Basic Market Structure Economic Relevance

Should we model the price?

• Customer: Agree on prices in advance

< 日 > < 同 > < 三 > < 三 >

Basic Market Structure Economic Relevance

Should we model the price?

• Customer: Agree on prices in advance \implies No need for modelling the price?

(日) (同) (三) (三)

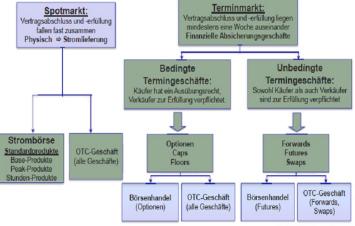
Basic Market Structure Economic Relevance

Should we model the price?

- Customer: Agree on prices in advance ⇒ No need for modelling the price?
- Energy Suppliers, Electricity Traders: Have to buy electricity on a regular basis
- \implies We should model the price for electricity

(日) (同) (三) (三)

Basic Market Structure Economic Relevance


Buy 'the' electricity for 'that' price

Where to buy electricity:

- EEX in Leipzig (Stock Exchange)
- OTC trading

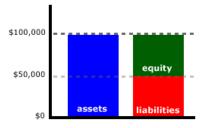
"The" price: Net price (without tax load, grid charges etc.)

Basic Market Structure Economic Relevance

Quelle: Praxisbuch Energiewirtschaft

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э


Achim Wübker achim.wuebker@statcon.de Forecasting electricity rates via EViews incorporating political dec

Economic Relevance I: Balance Sheet of an Energy Supplier

Legal requirements: Since 1998

• KonTraG (Gesetz zur Kontrolle und Transparenz im Unternehmensbereich):

Companies are obliged to disclose their risk profile

Equity = the difference between total assets and total liabilities

Economic Relevance II

- Assets: Future Payments of Energy Consumer
- Liabilities: Suppliers have to buy electricity to meet their contract obligation - Two possibilities
 Spot market: Buy energy in future at spot market non-hedged risk
 Derivative market: Ensure to be able to buy energy in the future for a certain price which does not depend on the market developments - hedged risk

Amount of Liabilities depend on future electricity prices

Basic Market Structure Economic Relevance

A good model for electricity rate propagation will be of key importance

- Improve corporate risk control (reduce risk capital)
- Meet increasing legal requirements

(日) (同) (三) (三)

Electricity Rates

Let's have a look at real data from the EEX: A very short introduction using EViews

(日) (同) (三) (三)

How to find a model for electricity prices?

Essentially two approaches:

- First approach: Apply existing models to the situation at hand and take the one with the best fit.
- Investigate the problem and get a deeper understanding of the price-determining factors

- 4 同 6 4 日 6 4 日 6

First Approach

Discriptive and inference statistics with EViews:

- Visualize the Data
- Fit a model
- Forecast

(日) (同) (三) (三)

-

So far, we have seen that

- Statistic Software can help you to visualize the data
- Statistic Software allows for statistical inference

Table of Contents	The Economic Model of Supply and Demand
Introduction	Explict Price Equation
Modelling electricity rates	Toy Model
Forecasting future electricity rates: Approach II	Literature

Find a good model

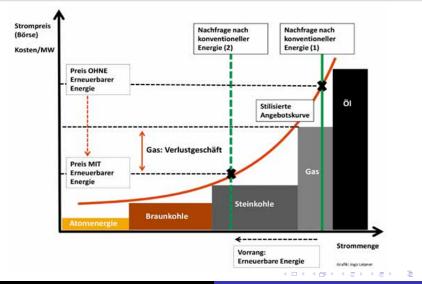
Achim Wübker achim.wuebker@statcon.de Forecasting electricity rates via EViews incorporating political dec

・ロン ・部 と ・ ヨ と ・ ヨ と …

3

The Economic Model of Supply and Demand Explict Price Equation Toy Model Literature

Supply and Demand


Fundamental economic principle: Supply and Demand

- Demand Curve: Price inelastic (as long as prices remain positive)
 Predictable (small volatility)
- Supply Curve: Merit Order Rule (next slide) ⇒ Supply Curve is price elastic

(日) (同) (三) (三)

The Economic Model of Supply and Demand Explict Price Equation Toy Model Literature

Merit Order Rule

Achim Wübker achim.wuebker@statcon.de Forecasting electrici

Forecasting electricity rates via EViews incorporating political dec

The Economic Model of Supply and Demand Explict Price Equation Toy Model Literature

Erneuerbare Energien Gesetz (EEG)

EEG: Renewable energy will be at first fed into the grid Implies Supply Curve with high volatility depending on

- Solar radiation
- Wind force and wind direction

(日) (同) (三) (三)

Table of Contents The Economic Introduction Explict Price E Modelling electricity rates Forecasting future electricity rates: Approach II Literature

The Economic Model of Supply and Demand Explict Price Equation Toy Model Literature

The price equation

Definition

Energy price=costs for the finally generated KWh

Theorem

The price is determined by the following formular:

$$P_t = \min(p_t(j) : j = \min\{u : f_t(u) := \sum_{i=1}^u S_t(i) \ge D_t\}, \quad (1)$$

 $S_t(i) =$ amount of electricity generated by unit *i*. $D_t =$ electricity demand at time *t*. $p_t(j) =$ unit *j*'s cost for producing one kWh.

Observation: P_t is in general not a continuous variable

Table of Contents	The Economic Model of Supply and Demand
Introduction	Explict Price Equation
Modelling electricity rates	
Forecasting future electricity rates: Approach II	

Demand Curve:

$$D(P) = \begin{cases} D^{1}(P) & P \leq 0\\ D^{0} & P \geq 0 \text{ no price sensitivity} \end{cases}$$
(2)

Supply Curve:

$$S(P) = \begin{cases} S^0 & P \le 0 \text{ no price sensitivity} \\ S^1(P) & P \ge 0 \end{cases}$$
(3)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

Toy Example

Demand and Supply Curve with continuous paths: Demand Curve:

$$D(P) = \begin{cases} D_t^0 + \sqrt[\beta]{-P} & P \le 0\\ D_t^0 & P \ge 0 \end{cases}$$
(4)

Supply Curve:

$$S_t(P) = \begin{cases} S_t^0 & P \le 0\\ \sqrt[\alpha]{P} + S_t^0 & P \ge 0 \end{cases}$$
(5)

(日) (同) (三) (三)

The Economic Model of Supply and Demand Explict Price Equation Toy Model Literature

Macroeconomic Theorem of Price

Theorem

The observed market price is the price for which

$$S_t(P_0) = D_t(P_0).$$
 (6)

(日) (同) (三) (三)

-

Table of Contents	The Economic Model of Supply and Demand
Introduction	
Modelling electricity rates	Toy Model
Forecasting future electricity rates: Approach II	

Plug in (5) and (4) to (6):

$$P(S^0_t, D^0_t) = \left\{egin{array}{cc} -(S^0_t - D^0_t)^eta & D^0_t \leq S^0_t \ (D^0_t - S^0_t)^lpha & D^0_t \geq S^0_t \end{array}
ight.$$

(7)

э

伺 ト く ヨ ト く ヨ ト

Table of Contents	The Economic Model of Supply and Demand
Introduction	Explict Price Equation
Modelling electricity rates	Toy Model
Forecasting future electricity rates: Approach II	Literature

Our aim: Understand the mechanism that determines the price. We

- Explained the basic shape of the Demand Curve and the Supply Curve
- Derive an exact formular for the price

So far...

伺 ト く ヨ ト く ヨ ト

Table of Contents	The Economic Model of Supply and Demand
Introduction	Explict Price Equation
Modelling electricity rates	Toy Model
Forecasting future electricity rates: Approach II	Literature

So far

Our aim: Understand the mechanism that determines the price. We

- Explained the basic shape of the Demand Curve and the Supply Curve
- Derive an exact formular for the price Difficult to apply directly, since S_t(i), D_t and p_t(j) not known
- Use the toy example (continuous paths!) ⇒ Allows to derive an exact formula for the price

The Economic Model of Supply and Demand Explict Price Equation **Toy Model** Literature

Is this a stochastic model?

We have

- Have Supply and Demand Curve
- Intersection yield uniquely determined price P_0

Where is the randomness?

Recall formular for the price:

$$P(S_t^0, D_t^0) = \begin{cases} -(S_t^0 - D_t^0)^{\beta} & D_t^0 \le S_t^0 \\ (D_t^0 - S_t^0)^{\alpha} & D_t^0 \ge S_t^0 \end{cases}$$
(8)

The Economic Model of Supply and Demand Explict Price Equation **Toy Model** Literature

Minimal Supply and Demand

Up to now: No definition of S_t^0

- Recall D⁰_t: Electricity demand depending on t (constant in P for P₀ > 0)
- S_t^0 = Minmial amount of energy feed into the grid (solar energy, wind energy, nuclear power etc.)

Amount cannot be determined in advance for

- Solar Energy
- Wind Energy

・ロト ・同ト ・ヨト ・ヨト

Table of Contents	The Economic Model of Supply and Demand
Introduction	Explict Price Equation
Modelling electricity rates	Toy Model
Forecasting future electricity rates: Approach II	Literature

Toy Example II

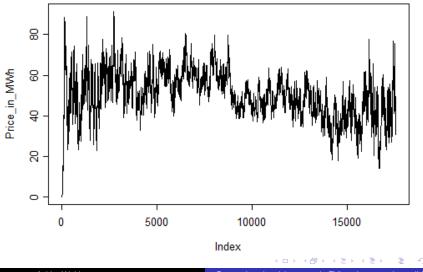
Supply and Demand as Stochastic Processes

$$dD_t^0 = MeanReversion_D * (D_t^0 - NormalLevel_t)dt + \sigma dW_t.$$
 (9)

$$dS_t^0 = MeanReversion_S * (S_t^0 - NormalLevel_t)dt +
ho dB_t.$$
 (10)

/□ ▶ < 글 ▶ < 글

The Economic Model of Supply and Demand Explict Price Equation **Toy Model** Literature


Toy Model II: Simulating Supply and Demand

Achim Wübker achim.wuebker@statcon.de Forecasting electricity rates via EViews incorporating political dec

(日) (同) (三) (三)

э

Toy Model III: The derived Price Curve

Achim Wübker achim.wuebker@statcon.de Forecasting electricity rates via EViews incorporating political dec

Final Conclusions

Two approaches for modelling electricity

- Approach I: Calibrate existing models to the data
- Approach II: Develop a new model for electricity

We have seen

- There is an explicit stochastic formula for the price, but not all parameters are known!
- \implies Toy model: explicit model for Supply and Demand
- Results: Merit Order together with EEG will increase volatility in the market
- But where are political decisions incorporated in the model?

イロト イポト イヨト イヨト

Table of Contents Introduction	The Economic Model of Supply and Demand Explict Price Equation	
Modelling electricity rates	Toy Model	
Forecasting future electricity rates: Approach II	Literature	

Literature

- Praxisbuch Energiewirtschaft, Konstantin, P.
- Managing energy risk, Burger, M.; Graeber, B.; Schindlmayer, G.
- Energy Brainpool: Power2sim-model
- Generierung von Szenariobäumen und Szenarioreduktion für stochastische Optimierungsprobleme in der Energiewirtschaft; Heitsch, H; Henrion, R.; Küchler, C.; Römisch, W.
- A Tutorial on Stochastic Programming, Shapiro, A; Philpott, A.
- ELMOD A Model of the European Electricity Market, Leuthold et al.
- Optimal Transport New and Old, Villani, C.

Table of Contents	The Economic Model of Supply and Demand
Introduction	
Modelling electricity rates	
Forecasting future electricity rates: Approach II	Literature

Thank you for your Attention

< E.