ENGERY PRICES AND WEATHER INFLUENCES

Bertram Schäfer, STATCON

The important price is not the spot market price

- "Der Terminmarkt macht mehr als 90 Prozent des Stromhandels aus", erläutert Martin Schelker. Der Ingenieur ist bei der EnBW Trading zuständig für den Handel mit Strom, Kohle und CO2-Emissionsrechten. Ähnlich wie an den Warenterminbörsen wird bei einem Termingeschäft die Lieferung einer bestimmten Menge Strom zu einem bestimmten Preis für einen späteren Zeitraum vereinbart. (Stuttgarter Zeitung 16.02.2014)
- We assume that the Spot market shows more influcences to the weather situation

Weather dependent components of elecricity prices

STATCON

Non-elastic consumption

- The electricity marekt is very inelastic.
- Most customers purchase based on a contract that fixes a price for a given amount in MWh. Thus these prices do not depend on short term variation. Because of this the demand does not change much when the price changes.
- Main influencing factors on the demand are: weather, time of day and day of year.
- This talk does not focus on the demand, but on the price, which can be seen as part of the demand.

Meteorologic influcence

- A direct influcence of the weather on price seems to be a logical implication, because the solar panels and wind turbines are changing the supply of energy.
- E.g. at the daily moring briefing of the EnBW energy sales department two meteorologists are at the table.

The meteorologsts are setting up forecasts for solar radiation and wind.

Hypothesis & Goals

- 1) **Spot-Market-Prices** are influenced by the amount of **renewable energy production**.
- Thus spot-market-prices depend indirectly on the weather (sun intensity and wind speed/direction)
- Use the knowledge about these relationships to set up a reasonable prediction-model for the spot-prices.

Methodology

1) Generate models to describe the **renewable energy-production**.

2) Model the dependencies of spot-marketprices and renewable energy-production.

Quantifiying Renewable Energy Production

- It's nearly impossible to get reasonable data on how much energy is produced by renewables at a certain time in Germany (or any country in the world).
- Problem is the distributed network and the lack of measurements.
- Thus the amount of energy has to be estimated based on physical theory.

Modeling Renewable Energy-Production

Sunpower

Variable	Description
Global Radiation	Variable of interest. Problem: No forecast.
Humidity	Proxy for cloudiness
Time	Proxy for position of the sun relative to location

Windpower

Variable	Description
Wind Speed	Problem: No forecast.
Wind Direction	Problem: No forecast.

Feldberg (Taunus)

Global Radiation (Feldberg Taunus)

Global Radiation (Feldberg Taunus)

^{8/2014}

Model

Idea

Explain the **Global Ration** by **hour** of day, **month** of year including the corresponding interaction. Additionally: **Humidity** as a proxy for cloudiness.

$\begin{array}{l} gbr \\ = \ \beta_0 + \ \beta_1 hour_d + \ \beta_2 month_d + \ \beta_3 hour_d * month_d + \ \beta_4 humidity \\ + \ \beta_5 humidity * time \end{array}$

Expectation

- β_1 : Nonlinear effect. Zero radiation at night.
- β_2 : Nonlinear effect. Less radiation in winter-season.
- β₃: Interaction to respect the different day-light-length in different seasons.
- β_4 : Positive effect.

Month-Dummy-Coefficients (non-significant)

Interaction: Hour*Month

Interaction: Humidity*Time

Explain the **global radiation** just based on the **sunrise** and **sunset-times** together with **humidity** and **month** (i.e. season).

gbr
=
$$\beta_0 + \beta_1 sun + \beta_2 humidity + \beta_3 month + \beta_4 sun$$

* humidity + $\beta_5 sun * month$

Advantage: Less parameter, less dummies

M2

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	25.22470	2.835361	8.896469	0.0000
SONNE	38.11178	1.004565	37.93859	0.0000
REL_HUM	-0.229551	0.025971	-8.838873	0.0000
REL_HUM_CENTERED*SONNE	-1.346033	0.008327	-161.6522	0.0000

*Month itself is not significant

Comparison of Both Models

	Model 1: Time Based	Model 2: Sun		
R2	0.8125	0.8120		
Statistical Valdidity	no			
Usabilty for Forecasts	Limited (needs good forecasts for humidity)			
Ease of Interpretation	A bit harder (due to number of coefficients)	Easier		

Lessons Learned

- Global Radiation might be a good proxy for the production of sunpower-based energy.
- Global Radiation can be explained reasonably well based on time/sun and humidity. This might be useful for forecasts in a model using Global Radiation as predictor for the prices.
- Only data from one location in germany was used. This limits of course the representativity of the results.

MODELLING SPOT-PRICES

Explorative Data Analysis

Explorative Data Analysis

PREIS

Step 1: Saisonality

- Model Saisonality in Prices via Dummy-Variables.
 - Hour of day
 - Day of week
 - Month of year
- Remove selected extreme prices via Dummies

Step 2: Explaining Prices

- Use the seasonal adjusted prices as response.
- Explain these prices by our global radiation and wind speed as proxies for solar and windenergy-production.

price = $\beta_0 + \beta_1 * radiation + \beta_2 * windspeed$

- Interpreation:
 - β₁: Importance of Solar-Power for spot-prices. Is expected to have negative sign.
 - β₂: Importance of wind-power for spot-prices. Is expected to have negative sign.

Model

Dependent Variable: SA_PREIS Method: Least Squares Date: 10/17/14 Time: 13:52 Sample (adjusted): 1/06/2005 10:00 8/15/2014 23:00 Included observations: 56595 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GBS WIND	2.850305 -0.000800 -0.869346	0.213612 0.000432 0.054216	13.34339 -1.851111 -16.03497	0.0000 0.0642 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.004525 0.004490 21.18347 25395070 -253100.4 128.6333 0.000000	Mean depende S.D. depende Akaike info cri Schwarz criter Hannan-Quinn Durbin-Watson	ent var nt var terion ion criter. n stat	-0.159381 21.23119 8.944373 8.944847 8.944520 0.327760

Lessons Learned

- While GBS and Wind seem to be significant, the model has major statistical problems:
 - Residuals are correlated.
 - Residuals are not normal.
 - Residuals are heteroscedastic.
 - The model does not explain a whole lot (R2).
- Transformations of the response did not help to solve these problems.
- Other modelling techniques might be needed.
- Maybe Gamma-regression might be usefull, but GLMs are rarely studied in time-seriescontext and the (rare) negative prices are a problem.

- Reason for the lack of fit in the model might be the Feldberg not being representative for the whole renewable energy-production in Germany.
- Prices on the weekend would allow a better insight, because those would show large average shift.
- To explain the extreme price events 15min data might be helpful

1) Open Clipart Library: https://openclipart.org

2) ...