Topcateg:9

Stata 15/MP kaufen
1056.72

 

Gesamtsumme
inkl. 19 % USt

Anzahl

Preis in €

1.056,72

Download Preisliste

Die besondere Stärke von Stata liegt in der Auswertung von zeitbasierten Daten. Angefangen von einfachen Zeitreihenmodellen (ARIMA) über die multivariate Pendants (VAR/VEC) stellen Sie auch Modelle zur Beschreibung von Volatilitäten (GARCH) auf. Mithilfe von Kaplan-Meier-Schätzern modellieren Sie Lebensdauern oder nutzen gemischte Modelle um Zusammenhänge in Paneldaten zu untersuchen. Abgerundet wird Stata durch eine mächtige Programmiersprache zur Automatisierung und Entwicklung neuer Methoden.

Breites Spektrum an statistischen Methoden

Stata gibt Ihnen aber auch alle Möglichkeiten der klassischen Statistik und noch vieles mehr. So können Sie mit Stata deskriptive Statistiken erstellen, gängige Hypothesentests (Mittelwertvergleiche, Tests auf Normalverteilung - jeweils nonparametrisch und parametrisch) berechnen oder Ihre Daten mit wissenschaftlichen Graphiken visualisieren.

Stata als umfangreiches statistisches Softwarepaket eignet sich vor allem für den Einsatz in Forschung und Entwicklung. Das breite Spektrum an hochwertigen statistischen Methoden aller Disziplinen dient einem großen Nutzerkreis. Insbesondere Forscher aus den Bereichen Soziologie, Ökonomie, Politik- und Sozialwissenschaft sowie Epidemiologie und anderen medizinischen Fachgebieten finden in Stata die benötigten Verfahren der Statistik.

Egal ob Sie Student oder Senior Researcher sind, es gibt immer die passende Stata Version für jede Komplexität und Größe des Datensatzes: Stata/ICStata/SE und Stata/MP

Argumente für Stata:

  • Vor allem einsetzbar in Forschung und Entwicklung
  • Stata besitzt eine umfangreiche Palette an statistischen und graphischen Funktionen und erstellt hochwertige Diagramme
  • Stata ist eine allgemeine Statistiksoftware mit umfassende Funktionalität
  • Stata is flexibel und umfangreich bei der Auswertung von Zeitreihendaten
  • Stata hat eine leicht erlernbare und trotzdem mächtige Programmiersprache

Dies könnte Sie auch interessieren

Limdep 11

Limdep 11

Limdep 11

Limdep ist eine Ökonometrie Software für die Auswertung von Regressionsmodellen für diskret... Mehr Details

Download Preisliste Zum Produkt

NLOGIT 6 (inkl. Limdep 11)

NLOGIT 6 (inkl. Limdep 11)

NLOGIT 6 (inkl. Limdep 11)

Ein Spitzenreiter im Bereich der Ökonometrie, der Zeitreihenanalyse, Discrete Choice Modelle und lineare... Mehr Details

Download Preisliste Zum Produkt

EViews 10

EViews 10

EViews 10

Im Bereich Ökonometrie ist EViews Ihre erste Wahl! Egal ob lineare Regression, Zeitreihenanalysen mittels ARCH,... Mehr Details

Download Preisliste Zum Produkt

Stata/MP

Mit Stata erhalten Sie ein umfangreiches statistisches Softwarepaket für den Einsatz in Forschung und Entwicklung. Stata bietet ein breites Spektrum umfangreicher und hochwertiger statistischer Methoden aller Disziplinen. Insbesondere Forscher aus den Bereichen Soziologie, Ökonomie, Politik- und Sozialwissenschaft sowie Epidemiologie und aus anderen medizinischen Fachgebieten finden die für sie spezifischen Ansätze in Stata realisiert (Survival Analysis, Panel-Data, ...)

Stata ist in allen Betriebssystemwelten zuhause. Stata kann in Windows-, Macintosh- und Unix-Umgebungen genutzt werden.

Stata steht in 3 Editionen zur Verfügung

Ob für erfahrene Statistiker oder Erstsemester-Studenten - Stata gibt es für jeden Anwender in der passenden Edition

  • Stata/MP: die größte und schnellste Stata-Version (Dual-core und Multicore-Computer)
  • Stata/SE: Stata für sehr große Datendateien
  • Stata/IC: Stata Standardversion

Stata / MP ist die schnellste und größte Version von Stata. Praktisch jeder aktuelle Computer kann das erweiterte Multiprocessing von Stata / MP nutzen. Dazu gehören die Intel i3-, i5-, i7-, i9-, Xeon- und Celeron- sowie AMD-Multi-Core-Chips. Auf Dual-Core-Chips läuft Stata / MP bei den zeitaufwendigen Schätzbefehlen 40% schneller. Mit mehr als zwei Kernen oder Prozessoren ist Stata / MP noch schneller. Sie können eine Stata / MP-Lizenz für die Anzahl der Kerne auf Ihrem Computer erwerben (maximal 64). Wenn Ihr Computer beispielsweise über acht Kerne verfügt, können Sie eine Stata / MP-Lizenz für acht, vier oder zwei Kerne erwerben.

Stata / MP kann auch mehr Daten analysieren als jeder andere Version von Stata. Stata / MP kann 10 bis 20 Milliarden Beobachtungen mit den derzeit größten Computern analysieren und ist bereit, bis zu 1 Billion Beobachtungen zu analysieren, sobald die Computerhardware aufholt.

Stata / SE und Stata / IC unterscheiden sich nur in der Datensatzgröße. Stata / SE und Stata / MP können Modelle mit unabhängigeren Variablen als Stata / IC (bis zu 10.998) anpassen. Stata / SE kann bis zu 2 Milliarden Beobachtungen analysieren.

Stata / IC erlaubt Datensätze mit bis zu 2048 Variablen und 2 Milliarden Beobachtungen. Stata / IC kann höchstens 798 unabhängige Variablen in einem Modell bedienen.

Numerics by Stata kann jede der oben aufgeführten Datengrößen in einer eingebetteten Umgebung unterstützen.

Alle oben genannten Varianten haben den gleichen vollständigen Funktionsumfang und enthalten eine PDF-Dokumentation.

Product features  Stata/IC  Stata/SE  Stata/MP
Maximum number of variables  2,048 32,767 120
Maximum number of observations 2.14 billion  2.14 billion  Up to 20 billion
Maximum number of independent variables  798 10,998 10,998
Multicore support (Time to run logistic regression with 5 million obs and 10 covariates ) 1-core/ 10.0 sec 1-core/ 10.0 sec 2- core (5.0 sec),    4-core (2,6 sec), 4+ core (even faster)
Complete suite of statistical features  Yes!  Yes!  Yes!
Publication-quality graphics  Yes!  Yes!  Yes!
Matrix programming language  Yes!  Yes!  Yes!
Complete PDF documentation  Yes!  Yes!  Yes!
Exceptional technical support  Yes!  Yes!  Yes!
Includes within-release updates  Yes!  Yes!  Yes!
64-bit version available  Yes!  Yes!  Yes!
Windows, macOS, and Linux  Yes!  Yes!  Yes!
Memory requirements  1 GB  2 GB  4 GB
Disk space requirements  1 GB  1 GB  1 GB 

 

* Die Anzahl der Beobachtungen ist nur durch die Größe des Arbeitsspeichers begrenzt.

Komplexe Funktionen mit Mata vereinfachen

Die eigene Programmiersprache Mata ist leicht erlernbar, denn sie ist einfach und kohärent. Zusätzlich hilft Ihnen die umfangreiche Palette an statistischen und graphischen Funktionen, sich auf die Analyse Ihrer Daten zu konzentrieren ohne programmieren zu müssen. Sollte aber mal eine Funktion fehlen, so ist es mit Hilfe der Programmiersprache möglich, die bestehende Funktion zu bearbeiten oder eine neue zu erstellen. Die Rechnergeschwindigkeit von Stata passt sich den jeweiligen Berechnungen (groß oder klein) an.

Sinnvolle Datenverwaltungsfunktionen

Die Datenverwaltungsfunktionen helfen Ihnen die Gesamtheit der Daten zu verändern. Das Zusammenführen von Datensätzen, die Schaffung oder Berechnung neuer Variablen ist mit wenig Aufwand möglich. Das tabellarische Interface unter Windows bzw. Mac vereinfacht die Aufgabenbearbeitung nochmals.

Mit Stata hochwertige Diagramme erstellen und individualisieren

Mit Stata erstellen Sie qualitativ hochwertige Diagramme für Publikationen und interne Dokumente. Sie können jederzeit zwischen vordefinierten oder selbst eingestellten Diagrammtypen wählen. Mit dem integrierten Grafik-Editor können Sie auch die Diagramme individualisieren. Mit den selbst geschriebenen Skripten lassen sich zahlreiche individuelle Grafiken erzeugen und exportieren.

Weitere Informationen

 

https://www.stata.com/why-use-stata/

Demoversion der Software Stata

Auf der Seite des Herstellers Stata Corp. können Sie sich für eine kostenlose 30-tägige Demoversion registrieren. Die Demoversion stellt Ihnen alle Funktionen von Stata zur Verfügung. Zur Registrierung besuchen Sie bitte die Herstellerseite: http://www.stata.com/customer-service/evaluate-stata/

  Windows Mac Linux
Andere Voraussetzungen     Stata für Unix benötigt eine Grafikkarte mit 16 oder 24 Bit Farbtiefe
Betriebssystem Windows XP, Vista, 7, 8, 10, Windows Server 2003, 2008, 2012 (32-/64-Bit) Mac OS X 10.7 oder höher (64-Bit) Jeder 64 Bit (x86-64 oder kompatible) oder 32 Bit PC (x86 oder kompatible) unter Linux
Min. CPU  
Min. RAM 512 MB
Festplattenspeicher 900 MB

New in Stata 15

 

Latent class analysis (LCA)

lca diagram

Discover and understand the unobserved groupings in your data. Use LCA's model-based classification to find out

  • how many groups you have,
  • who is in those groups, and
  • what makes those groups distinct.
 
 

bayes: logistic ...
and 44 more

Bayesian regression

Type bayes: in front of any of 45 Stata estimation commands to fit a Bayesian regression model.

 
 

Markdown & dynamic documents

Type this,
code
Get this,
markdown thumbnail
  • Create webpages from Stata
  • Intermix text, regressions, results, graphs, etc.
  • See changes in data or commands automatically reflected on webpage
 
 

Linearized DSGEs

Write your model in simple algebraic form. Stata does the rest: solve model, estimate parameters, estimate policy and transition matrices (with CIs), estimate and graph IRFs, and perform forecasts.

 
 

Finite mixture models (FMMs)

  • 17 estimators and combinations
  • Continuous, binary, count, ordinal, categorical, censored, and truncated outcomes
  • Survival outcomes
 
 

Spatial autoregressive models

Because


         sometimes


                  where you are


                                  matters.
 
 

Interval-censored survival models

graph

Fit any of Stata's six parametric survival models to interval-censored data. All the usual survival features are supported: stratified estimation, robust and clustered SEs, survey data, graphs, and more.

 
 

Nonlinear multilevel
mixed-effects models

      When ...
      your science ...
      says ...
      your model ...
      is ...
      nonlinear in its parameters
 
 

Mixed logit models: Advanced choice modeling

Do you walk to work, ride a bus, or drive your car? Which of three insurance plans do you buy? Which political party do you vote for?

We make dozens of choices every day. Researchers have access to gaggles of data about those choices. Mixed logit introduces random effects into choice modeling and thereby relaxes the IIA assumption and increases model flexibility.

 
 

Nonparametric regression

When you know something matters.

But have no idea how.

 
 

Create Word documents from Stata

  • Automate your reports
  • Write paragraphs and tables to Word documents
  • Embed Stata results and graphs in paragraphs and tables
  • Customize formatting of text, tables, and cells
 
PDF Create PDFs, too!
 

Bayesian multilevel models

Graph

Small number of groups?
Many hierarchical levels?
Prefer making probability statements?

Consider Bayesian multilevel modeling.

 
 

Threshold regression

graph

Your time-series regression may change parameters at some point in time or at multiple points in time. The activity of foraging animals might follow a completely different pattern at temperatures above some threshold. You may not know the value of that threshold. Finding such thresholds and estimating the parameters within the regimes is what threshold regression does.

 
 

Panel-data tobit with random coefficients

graph

Stata has long had estimators for random effects (random intercepts) in panel data.

 

Search, browse, and import FRED data

graph

The St. Louis Federal Reserve makes available over 470,000 U.S. and international economic and financial time series. You can now easily search, browse, and import these data.

 
 

Multilevel regression for interval-measured outcomes

Incomes are sometimes recorded in groupings, as are people's weights, insect counts, grade-point averages, and hundreds of other measures. Often we have repeated measurements for individuals, or schools, or orchards, etc. So ... we need multilevel regression for interval-measured (interval-censored) outcomes.

 
 

Multilevel tobit regression for censored outcomes

  • Left-censoring, right-censoring, both
  • Censoring that varies by observation
  • Make inferences about either the uncensored or the censored outcome
  • Robust and clustered SEs
  • Support for survey data
 
 

Panel-data cointegration tests

graph
  • Tests
    • Kao
    • Pedroni
    • Westerlund
  • Total of nine variants of tests
 
 

Tests for multiple breaks in time series

graph
  • Cumulative sum (CUSUM) test for parameter stability
    • CUSUM of recursive residuals
    • CUSUM of OLS residuals
  • Plots with CIs
 
 

Multiple-group generalized SEM

graph graph graph

Generalized SEM now supports multiple-group analysis. Easily specify groups and test parameter invariance across groups. GSEM models include

  • continuous, binary, ordinal, count, categorical, and even survival outcomes
  • multilevel models
 
 

ICD-10-CM/PCS

  • NCHS's ICD-10-CM diagnosis codes
  • CMS's ICD-10-PCS procedure codes
  • Verify codes are valid
  • Create new variables based on codes
 
 

Power for cluster randomized designs

power twomeans graph

Power analysis for comparing

  • One- and two-sample means
  • One- and two-sample proportions
  • Two-sample survivor curves

when you randomize clusters instead of individuals

 
 

Power for linear regression models

screenshot of dialog box
  • Solve for
    • Power
    • Sample size
    • Effect size
  • Specify lists of
    • Alpha values
    • Power levels
    • Beta values
    • Sample sizes
    • And more
  • Automated tables and graphs
 
 

Heteroskedastic linear regression

graph
  • Model for the variance
  • Robust and cluster SEs
  • Survey-data support
 
 

Poisson models with sample selection

Counts are common. How many:

Fish did you catch?
Accidents occurred?
Patents does a firm generate?

Outcomes are not always seen.

Folks evade the game warden.
Accidents are not always reported.
Some firms prefer trade secrets to patents.

So you need Poisson models with sample selection.

 
 

More in panel data

Nonlinear models with random effects, including random coefficients Bayesian panel-data models Interval regression with random intercepts and random coefficients
 

More in graphics

graph Transparency in graphs SVG export
 

More in statistics

Bayesian survival models Zero-inflated ordered probit Add your own power and sample-size methods Bayesian sample-selection models And yet more
 

More in the interface

Stata in Swedish
Stata in Chinese
Improvements to the Do-file Editor
 

And, even more

Stream random-number generator Improvements for Java plugins

 

Die gesamte Feature Liste finden Sie auch afu der Seite von Stata.com:

https://www.stata.com/features/

 

Stata Features

Data management

data transformations, match-merge, ODBC, XML, by-group processing, append files, sort, row–column transposition, labeling, saving results

Basic statistics

summaries, cross-tabulations, correlations, t tests, equality-of-variance tests, tests of proportions, confidence intervals, factor variables

Linear models

regression; bootstrap, jackknife, and robust Huber/White/sandwich variance estimates; instrumental variables; three-stage least squares; constraints; quantile regression; GLS

Multilevel mixed-effects models

generalized linear models;continuous, binary, and count outcomes; two-, three-, and higher-level models; random-intercepts; random-slopes; crossed random effects; BLUPs of effects and fitted values; hierarchical models; residual error structures; support for survey data in linear models

Binary, count, and discrete outcomes

logistic, probit, tobit; Poisson and negative binomial; conditional, multinomial, nested, ordered, rank-ordered, and stereotype logistic; multinomial probit; zero-inflated and left-truncated count models; selection models; marginal effects

Longitudinal data/panel data

random and fixed effects with robust standard errors; linear mixed models, random-effects probit, GEE, random- and fixed-effects Poisson, dynamic panel-data models, and instrumental-variables regression; panel unit-root tests; AR(1) disturbances

Generalized linear models (GLMs)

ten link functions, user-defined links, seven distributions, ML and IRLS estimation, nine variance estimators, seven residuals

Nonparametric methods

Wilcoxon-Mann-Whitney, Wilcoxon signed ranks and Kruskal-Wallis tests; Spearman and Kendall correlations; Kolmogorov-Smirnov tests; exact binomial CIs; survival data; ROC analysis; smoothing; bootstrapping

Exact statistics

exact logistic and Poisson regression, exact case-control statistics, binomial tests, Fisher's exact test for r × c tables

ANOVA/MANOVA

balanced and unbalanced designs; factorial, nested, and mixed designs; repeated measures; marginal means; contrasts

Multivariate methods

factor analysis, principal components, discriminant analysis, rotation, multidimensional scaling, Procrustean analysis, correspondence analysis, biplots, dendrograms, user-extensible analyses

Cluster analysis

hierarchical clustering; kmeans and kmedian nonhierarchical clustering; dendrograms; stopping rules; user-extensible analyses

Resampling and simulation methods

bootstrapping, jackknife and Monte Carlo simulation; permutation tests

Tests, predictions, and effects

Wald tests; LR tests; linear and nonlinear combinations, predictions and generalized predictions, marginal means, least-squares means, adjusted means; marginal and partial effects; forecast models; Hausman tests

Graphics

line charts, scatterplots, bar charts, pie charts, hi-lo charts, regression diagnostic graphs, survival plots, nonparametric smoothers, distribution Q-Q plots

Survey methods

multistage designs; bootstrap, BRR, jackknife, linearized, and SDR variance estimation; poststratification; DEFF; predictive margins; means, proportions, ratios, totals; summary tables; regression, instrumental variables, probit, Cox regression

Survival analysis

Kaplan-Meier and Nelson-Aalen estimators,; Cox regression (frailty); parametric models (frailty); competing risks; hazards; time-varying covariates; left- and right-censoring, Weibull, exponential, and Gompertz analysis

Epidemiology

standardization of rates, case–control, cohort, matched case-control, Mantel-Haenszel, pharmacokinetics, ROC analysis, ICD-9-CM

Time series

ARIMA; ARFIMA; ARCH/GARCH; VAR; VECM; multivariate GARCH; unobserved components model; dynamic factors; state-space models; business calendars; correlograms; periodograms; forecasts; impulse-response functions; unit-root tests; filters and smoothers; rolling and recursive estimation

Multiple imputation

nine univariate imputation methods; multivariate normal imputation; chained equations; explore pattern of missingness; manage imputed datasets; fit model and pool results; transform parameters; joint tests of parameter estimates; predictions

Simple maximum likelihood

specify likelihood using simple expressions; no programming required; survey data; standard, robust, bootstrap, and jackknife SEs; matrix estimators

Programmable maximum likelihood

user-specified functions; NR, DFP, BFGS, BHHH; OIM, OPG, robust, bootstrap, and jackknife SEs; Wald tests; survey data; numeric or analytic derivatives

Other statistical methods

kappa measure of interrater agreement; Cronbach's alpha; stepwise regression; tests of normality

Programming features

adding new commands; command scripting; object-oriented programming; menu and dialog-box programming; Project Manager; plugins

Matrix programming-Mata

interactive sessions, large-scale development projects, optimization, matrix inversions, decompositions, eigenvalues and eigenvectors, LAPACK engine, real and complex numbers, string matrices, interface to Stata datasets and matrices, numerical derivatives, object-oriented programming

Internet capabilities

ability to install new commands, web updating, web file sharing, latest Stata news

Accessibility

Section 508 compliance, accessibility for persons with disabilities

Sample session

A sample session of Stata for Mac, Unix, or Windows.

community-contributed commands

User-written commands for meta-analysis, data management, survival, econometrics

Graphical user interface

menus and dialogs for all features; Data Editor; Variables Manager; Graph Editor; Project Manager; Do-file Editor; Clipboard Preview Tool; multiple preference sets

Graphics

line charts; scatterplots; bar charts; pie charts; hi-lo charts; contour plots; GUI Editor; regression diagnostic graphs; survival plots; nonparametric smoothers; distribution Q-Q plots

Documentation

20 manuals20 manuals; 11,000+ pages; seamless navigation; thousands of worked examples; methods and formulas; references; 11,000+ pages; seamless navigation; thousands of worked examples; methods and formulas; references

Power and sample size

power; sample size; effect size; minimum detectable effect; means; proportions; variances; correlations; case-control studies; cohort studies; survival analysis; balanced or unbalanced designs; results in tables or graphs

Treatment effects

inverse probability weight (IPW); doubly robust methods; propensity score matching; regression adjustment; covariate matching; multilevel treatments; average treatment effects (ATEs); average treatment effects on the treated (ATETs); potential-outcome

User-written

means (POMs)

SEM (Structural equation modeling)

graphical path diagram builder; standardized and unstandardized estimates; modification indices; direct and indirect effects; continuous, binary, count, and ordinal outcomes (GLM); multilevel models; random slopes and intercepts; factors scores, empirical Bayes, and other predictions; groups and tests of invariance; goodness of fit; handles MAR data by FIML; correlated data

Functions

statistical; random-number; mathematical; string; date and time

Embedded statistical computations

Numerics by Stata

Contrasts, pairwise comparisons, and margins

compare means, intercepts, or slopes; compare to reference category, adjacent category, grand mean, etc.; orthogonal polynomials; multiple comparison adjustments; graph estimated means and contrasts; interaction plots

GMM an nonlinear regression

generalized method of moments (GMM); nonlinear regression