GAUSS 17 versions & prices
0

 

Total
incl. 19 % VAT

Quantity

GAUSS helps you to solve numeric optimisation problems and is often used in statistics, econometrics and time series analysis. It is often used in economics, portfolio-management or in technical applications, as well. No other product offers the same combination of interactive tools for data analysis, precision in calculations and speed and efficiency!

Based on a matrix-oriented programming language GAUSS is the number one product wherever innovative and computer-intensive problems occur. GAUSS is optimized for rapid prototyping and the application of numerical algorithms for data analysis. Desktop and enterprise edition are equipped with a 64-bit-compiler that allows scalable implementation of numerical methods.

At the same time GAUSS offers an interactive data evaluation suite that does not require much programming skills from the user. It can easily produce high-professional graphs like 2D- and 3D-plots, surface- and Box-plots or histograms.

Its flexibility makes GAUSS the first choice for statisticians, economic and financial analysts.

Arguments for GAUSS:

  • Easy to learn and fast programming language
  • More than 400 predefined mathematical functions
  • Allows data analysis for big data

Gauss - Mathematical and Statistical System

The GAUSS Mathematical and Statistical System is a fast matrix programming language widely used by scientists, engineers, statisticians, biometricians, econometricians, and financial analysts. Designed for computationally intensive tasks, the GAUSS system is ideally suited for the researcher who does not have the time required to develop programs in C or FORTRAN but finds that most statistical or mathematical "packages" are not flexible or powerful enough to perform complicated analysis or to work on large problems.

Whatever mathematical tool or language you are now using, you'll find that GAUSS can greatly increase your productivity!

Comprehensive Environment for Modeling and Analysis

GAUSS is a complete analysis environment suitable for performing quick calculations, complex analysis of millions of data points, or anything in between. Whether you are new to computerized analysis or a seasoned programmer, the GAUSS family of products combine to offer you an easy to learn environment that is powerful and versatile enough for virtually any numerical task. Since its introduction in 1984, GAUSS has been a standard for serious number crunching and complex modeling of large-scale data.

Worldwide acceptance and use in government, industry and the academic community is a firm testament to its power and versatility. The GAUSS System can be described several ways: It is an exceptionally efficient number cruncher, a comprehensive programming language, and an interactive analysis environment. GAUSS may be the only numerical tool you will ever need.

Interactive and Fast

For simple problems GAUSS provides a fully interactive environment for exploring data, creating scenarios and analyzing results. For more complex tasks, you can write programs and save them to disk. GAUSS is exceptionally fast, providing performance comparable to compiled C or FORTRAN programs. And unlike other math packages, GAUSS's speed is equally impressive when working with problems of very large scale.

Straightforward and Efficient

While many GAUSS users never find a need to program extensively, for those who do, GAUSS provides a natural and logical environment that is easy to learn and powerful to use. At the core of GAUSS is an efficient programming language adequate for doing even the most sophisticated analysis. The basic unit of analysis in GAUSS is a matrix, resulting in a syntax closely resembling common mathematical expressions. Since matrix operations are assumed, most of the looping required by other languages is eliminated.

The Data Translation Loop allows transformations on variables in a data set by directly using the variable names in expressions. This streamlines data transformations and makes for shorter, more readable programs. GAUSS's Source Level Debugger greatly simplifies program development. With all of the features you would expect in a dedicated debugging system, you can quickly identify and solve program logic errors at run time.

Additionally, GAUSS handles complex numbers automatically and seamlessly. You don't have to keep track of the real and imaginary parts of a matrix. Complex numbers are handled automatically, that greatly simplifies programming for engineering and other tasks that require working with complex numbers.

The Language

As a complete programming language, the GAUSS system is both flexible and powerful. Immediately available to the GAUSS user is a wide variety of statistical, mathematical and matrix handling routines.

GAUSS can be used either interactively for short one-off commands or by creating large programs consisting of several files and libraries of functions, or anything in between.

Visualization and Presentation

GAUSS's high resolution Publication Quality Graphics gives you powerful ways to visually analyze your data and present your findings. A wide choice of graphing options are available to you, including 2D, 3D, surface, contour, polar and log graphs, as well as bar graphs, histograms, box graphs and more. Graphs can be placed in individual overlapping or tiled windows on a single page. You can export graphics files in a number of popular formats, including WMF, HP-GL/2, PostScript and EPS formats, for use in page layout and presentation packages, and GAUSS includes support for a wide range of output devices, including most of the latest printers and plotters.

The Tools You Need

GAUSS has over 400 mathematical functions built in, including LINPACK, EISPACK and BLAS routines, factorizations, decompositions, eigenvalues, distributions and equation solving functions, to provide you with all the tools you need to solve your most difficult problems. You can easily customize or add to the GAUSS function library, and optional modules provide access to many other specialized capabilities.

The GAUSS Run-Time Module (GRTM) allows users to distribute GAUSS applications that they have written to people who do not have GAUSS. Developers distribute a compiled file to end users along with the GRTM. This is available with GAUSS at no extra charge.

Other important features include: data import/export compatibility with many popular spreadsheets and databases, long period random number generators, built-in functions for efficiently handling sparse data, and a Foreign Language Interface for incorporating your favorite compiled C and FORTRAN programs directly into GAUSS programs.

Further Information:

  Windows® Linux® MAC®
Further Requirements      
Operating System Windows Vista, 7, 8, 10 (32-/64-Bit) Red Hat 6.X+/CentOS/Ubuntu (only 64-Bit!) Mac OS X 10.7 or higher (only 64-Bit!)
Minimum CPU Pentium-II (or higher) Pentium-II (or higher) Pentium-II (or higher)
Min. RAM 1 GB (4 GB recommended) 1 GB (4 GB recommended) 1 GB (4 GB recommended)
Disk Space 400 MB 400 MB 400 MB

New Features in GAUSS 16

The new Import Wizard

The new import wizard in GAUSS comes with a new fresh inituitive interface and now reads CSV, XLS, XLSX and other delimited text files. The import wizard is also able to handle malformed data files. Furthermore the speed of loading data and of the preview got improved. There is now a visual feedback and an enhanced experience with color coding.

the Import Wizard in GAUSS

Reclassification and Recoding

GAUSS 16 provides new functions for an easy transformation of categorial variables from text labels to numeric labels and vice versa, or placing numeric ranges into seperated categories.

Reclassify
With this function you will be able to:

  • reclassify text labels to numeric category labels
  • reclassify numeric labels to text labels
  • reclassify vectors individually, an entire matrix or a multidimensional array
//Create a 7x1 string vector
X = "EU"  $| "GBP"  $| "USD"  $|
    "GBP"  $| "USD"  $| "EU"  $| "EU";

//Use 'uniquesa' to create a string vector
//with the unique strings in 'X' listed
//in alphabetical order
from = uniquesa(X);

//Create 3x1 vector of numeric category labels
to = { 0, 1, 2 };

//Reclassify elements in 'X' from
//   EU  -> 0
//   GBP -> 1
//   USD -> 2
X_numeric = reclassify(X, from, to);

Data Scaling - rescale Function

Maximum likelihood estimations or optimization routines often fail due to poorly scaled data. The new function rescale provides 8 different scaling options with one simple line of code.

Data scaling functions in GAUSS

Example: Use a named method and return the data plus scaling factors:

//Scale each column of 'x_train'
{ x_train, location, scale } = rescale(x_train, standardize");

In this example location and scale were passed in later to scale another sample from the same data set:

//Scale each column of 'x_test' with scale and
//location parameters created from training data above
x_test = rescale(x_test, location, scale);

New Sampling Functions

create samples from graphs

Sample without replacement

//Take a 100 observation sample from 'x'
//without replacement
sample = sampleData(x, 100);

Sample with replacement

replace = 1;
//Take a 100 observation sample from 'x'
//WITH replacement
sample = sampleData(x, 100, replace);

Create training set and test set

n = rows(x);

//Create indices for training set
idx_train = sampleData(seqa(1,1,n), 0.75 * n);

//Extract training set
x_train = x[idx_train];

//Remove (or delete) training set rows from 'x'
//to create test set
x_test = delrows(x, idx_train);

Create random indices to draw from multiple variables

//Create random integers from between 1 and 1000
range = { 1, 1000 };
idx = rndi(50, 1, range);
//Sample same observations from 'x' and 'y'
x_sample = x[idx,.];
y_sample = y[idx];

Generalized Linear Model

In statistics, the generalized linear model (GLM) is a flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value. The GAUSS function glm is used to solve generalized linear model problems. GAUSS provides the following combinations from exponential family and related link function:

  • Normal: identity, inverse, ln
  • Binomial: identity, inverse, ln, logit, probit
  • Poisson: identity, inverse, ln
  • Gamma: identity, inverse, ln

Format

// Read data matrix from a '.csv' file and start from the second row
data = csvReadM("binary.csv", 2);

// Read headers from first row
vnames = csvReadSA("binary.csv", 1|1);

// Specify dependent variable
y = data[.,1];

// Specify independent variable
x = data[.,2:4];

// Specify link function
link = "logit";

// Call glm function
call glm(y, x, "binomial", vnames, 3, link);

Output

Generalized Linear Model

Valid cases:                  400     Dependent Variable:                      admit 
Degrees of freedom:           394     Distribution:                         binomial 
Deviance:                   458.5     Link function:                           logit 
Pearson Chi-square:         397.5     AIC:                                     470.5
Log likelihood:            -229.3     BIC:                                     494.5
Dispersion:                     1     Iterations:                                  4


                                          Standard                              Prob 
Variable                 Estimate            Error          z-value             >|z| 
----------------     ------------     ------------     ------------     ------------ 
CONSTANT                    -3.99             1.14          -3.5001      0.000465027 
rank           2         -0.67544          0.31649          -2.1342        0.0328288 
               3          -1.3402          0.34531          -3.8812      0.000103942 
               4          -1.5515          0.41783          -3.7131      0.000204711 
gre                     0.0022644         0.001094           2.0699        0.0384651 
gpa                       0.80404          0.33182           2.4231        0.0153879 

Note: Dispersion parameter for BINOMIAL distribution taken to be 1

Simplified Function Calls

Many GAUSS procedures used to require passing in all arguments including control structures. Additionally many GAUSS procedures that call a user-defined procedure, such as optimization or integration functions used to require extra data to be passed in as a DS structure. Now you just need the function integrate1d!

Old style

//Define procedure to be integrated
proc (1) = myProc(x, struct DS d);
   local y;
   y = d.dataMatrix;
   retp(exp( -(x .* x) / (2 .* y) ));
endp;

//Define limits of integration
x_min = -1000;
x_max = 1000;

//Define extra argument for procedure 'myProc'
struct DS d;
d = dsCreate();
d.datamatrix = 3;

//Define 'ctl' to be a control structure
struct integrateControl ctl;

//Fill in with default values
ctl = integrateControlCreate();

//Calculate integral
integral = integrate1d(&myProc, x_min, x_max, d, ctl);

New simpler style

//Define procedure to be integrated
proc (1) = myProc(x, z);
retp(exp( -(x .* x) / (2 .* z) ));
endp;

//Define limits of integration
x_min = -1000;
x_max = 1000;

//Define extra arguments for procedure 'myProc'
a = 3;

//No need for control structure if using default values
integral = integrate1d(&myProc, x_min, x_max, a);

Speed ups

Speed Improvements in GAUSS
Speed Improvements in GAUSS
Speed Improvements in GAUSS
Speed Improvements in GAUSS

New Functions

  • QZ decomposition with options to sort the eigenvalues (qz)
  • Hypergeometric CDF, PDF and random number generation (cdfHyperGeo, pdfHyperGeo, rndHyperGeo)
  • Binomial PDF and Poisson PDF (pdfBinomial, pdfPoisson)
  • Option to sort eigenvalues of generalized schur decomposition (qz)
  • More powerful and easy to use integration function, using adaptive quadrature (integrate1d)
  • Function to set axes line color and thickness (plotSetAxesPen)
  • Option to specify range of random integers created by rndi
  • Option to specify delimiter for strsplit
  • Data sampling function, sampleData
  • Data scaling function, rescale
  • New functions for reclassifying data based upon a match (string or numeric) or a range, (reclassify, reclassifyCuts)
  • Generalized Linear Model (GLM)
  • Much improved, faster and simpler to use functions for reading CSV and other delimited text files (csvReadM, csvReadSA)

User Interface and other Enhancements

  • Syntax highlighting and brace-matching in program input/output window
  • Debugger page supports file editing, 'find usages' and full editor functionality
  • Improved file associations on Mac
  • Bug fixes